ε - optimality conditions for composed convex optimization problems
نویسندگان
چکیده
The aim of the present paper is to provide a formula for the ε subdifferential of f +g ◦h different from the ones which can be found in the existent literature. Further we equivalently characterize this formula by using a so-called closedness type regularity condition expressed by means of the epigraphs of the conjugates of the functions involved. Even more, using the ε subdifferential formula we are able to derive necessary and sufficient conditions for the ε optimal solutions of composed convex optimization problems.
منابع مشابه
Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملGlobal Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints
For the problem of maximizing a convex quadratic function under convex quadratic constraints, we derive conditions characterizing a globally optimal solution. The method consists in exploiting the global optimality conditions, expressed in terms of ε-subdifferentials of convex functions and ε-normal directions, to convex sets. By specializing the problem of maximizing a convex function over a c...
متن کاملTwo-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints
This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints. Firstly, we consider some lower level constraint qualifications (CQs) for this problem. Then, under these CQs, we derive formula for estimating the subdifferential of its valued function. Finally, we present some necessary optimality condit...
متن کاملThe KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings
The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008